
Statistical mechanics derivation of hydrodynamic boundary conditions: the diffusion equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 9223

(http://iopscience.iop.org/0953-8984/14/40/313)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 18/05/2010 at 15:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/40
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 9223–9235 PII: S0953-8984(02)36564-0

Statistical mechanics derivation of hydrodynamic
boundary conditions: the diffusion equation

M Fuchs1,3 and K Kroy2

1 Department of Physics and Astronomy, The University of Edinburgh, JCMB King’s Buildings,
Edinburgh EH9 3JZ, UK
2 Institut Charles Sadron, 6 rue Boussingault, 67083 Strasbourg Cedex, France

Received 2 May 2002, in final form 24 July 2002
Published 27 September 2002
Online at stacks.iop.org/JPhysCM/14/9223

Abstract
Considering the example of interacting Brownian particles we present a
linear response derivation of the boundary condition for the corresponding
hydrodynamic description (the diffusion equation). This requires us to identify
a non-analytic structure in a microscopic relaxation kernel connected to the
frequency-dependent penetration length familiar for diffusive processes, and
leads to a microscopic definition of the position where the hydrodynamic
boundary condition has to be applied. Corrections to the hydrodynamic limit
are obtained and we derive general amplitudes of spatially and temporally long-
ranged fluctuations in the diffusive system considered.

1. Introduction

The description of dynamical processes in condensed matter greatly simplifies if fluctuations
are studied which are slow and smooth compared to the microscopic scales of length and time
of the system. Then hydrodynamicequations for a small number of fields can be derived, either
using rather general phenomenological considerations, or by coarse graining starting from a
microscopic statistical mechanics description. In the latter a large number N of particles need
to be handled and the hydrodynamic fields (normally) arise as coarse-grained densities of
conserved variables [1]. The Zwanzig–Mori operator formalism enables one to perform the
coarse graining of the microscopic equations of motion using spatially Fourier-transformed
variables in the limit of vanishing wavevector q (corresponding to large wavelengths 2π/q).
As early as 1931, Onsager explained how the microscopic equations in the limit of q → 0 and
small frequency lead to the hydrodynamic equations [2]. He suggested that in an infinite system
a perturbation described by macroscopic hydrodynamic equations decays from its initial value
according to the identical dynamical equations as a long-wavelength and small-frequency
fluctuation around local thermodynamic equilibrium [3]. As an important by-product, this
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correlation functions approach has led to general and exact microscopic expressions for the
phenomenological transport coefficients of the hydrodynamic equations (the Green–Kubo
relations).

Hydrodynamic equations, which are partial differential equations, require temporal and
spatial boundary conditions to give unique solutions; see e.g. the examples in [4]. Following
Onsager, only the former are understood from microscopic many-body approaches, while,
by studying infinite systems, the latter have been neglected. Within the phenomenological
approach, simple continuity considerations lead to the required conditions on surfaces, yet
their derivation from information about microscopic interactions and molecular parameters
still appears desirable. First, this would provide rigorous statistical mechanics definitions
of the parameters characterizing the boundary condition; second, different conditions (like
stick or slip for fluid flow, or flux versus no-flux with or without adsorption of particles at
a surface) could be predicted from molecular interactions; and third, generalizations beyond
the true hydrodynamic limit (e.g. for finite geometries) would become possible. Only the
question of the tangential velocity of a flow along a solid boundary has a long history, which
goes back to Maxwell, and, for rarefied gases, is quite well answered in the framework of the
Boltzmann equation (Knudsen-layer problem [5]). Yet, beyond the dilute limit a fluctuating
hydrodynamics calculation by Wolynes [6] has uncovered the subtleties arising from back-
flow patterns (coupling of hydrodynamic modes), and only rather recently has there been
the first study of this problem in the microscopic correlation functions approach by Bocquet
and Barrat [7]. In our study of the simpler system of a single conserved variable which
macroscopically obeys a diffusion equation, we follow the approach of Bocquet and Barrat
and connect a microscopic linear response calculation to the macroscopic hydrodynamic
description via a generalization of Onsager’s regression hypothesis.

On the macroscopic level, the number density n(r, t) of interacting Brownian particles at
the space point r and at time t obeys a diffusion equation

∂t n(r, t) = D ∇2n(r, t), (1)

where D is the (gradient) diffusion coefficient which enters equation (1) as a phenomenological
transport coefficient; ∂t = ∂/∂ t denotes a partial time derivative and ∇ = ∂/∂r a spatial
gradient. If the diffusing particles border a solid surface which moves with velocity v(t),
then the number of particles (per unit area and time) displaced by the surface, nv, needs to be
balanced by a particle flux, j, away from the boundary. As the latter obeys j = −D ∇n, the
no-influx boundary condition on the solid surface becomes [4]

ên · [n(r, t)v(t) + D ∇n(r, t)]bd = 0, (2)

here ên is a unit vector normal to the surface,whose position is abbreviated as ‘bd’ for boundary.
In sections 2 and 3 of this manuscript, equation (2) will be derived up to linear order in

v by coarse graining the many-body statistical mechanics description of interacting Brownian
particles. First, the appropriate microscopic kernel is found (section 2),and then its small-q and
small-ω behaviour discussed (section 3). The calculation entails the (standard) derivation of
equation (1) including the Green–Kubo-type calculation of D. The solution of equations (1),
(2) around a spherical object to linear order in the perturbing velocity v is summarized in
appendix A for comparison reasons, while appendix B contains technical material. Section 4
describes an application of our results. The power law decay of the force experienced by a
large sphere moving among the Brownian particles is deduced along with its mean squared
displacement, which exhibits a long-time tail.
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2. Microscopic approach

2.1. Smoluchowski equation, and notation

The statistical mechanics basis for interacting Brownian particles is given by the Smoluchowski
equation which is a generalized diffusion equation in high-dimensional phase space [8, 9]. It
describes the temporal evolution of the many-body probability distribution �({ �ri}, t), which
depends on the positions �ri of all particles, i = 1, . . . , N + 1, where we consider N identical
bath particles with Brownian diffusion coefficient Di = D0 and one additional tracer with
index s = N + 1 and diffusion coefficient Ds . This describes the temporal evolution of
the many-body probability distribution �({ri}, t), which depends on the positions ri of all
particles, i = 1, . . . , N + 1 [8, 9]:

∂t� =
∑

i

Di∂ i · (∂ i − Fi)�. (3)

Here ∂ i = ∂/∂ri , and energies are measured in units of the thermal energy. The particle
interactions enter equation (3) via the potential forces F j ≡ −∂ j V ({ri}) resulting from
interactions between the bath particles (V p) and between tracer and bath particles (V s);
V = V p + V s . Dynamic effects due to the background medium (hydrodynamic interactions)
are neglected at the present stage. To reach the hydrodynamic limit we will take the size of the
tracer as becoming much larger than the bath particle size. For the presentation in the main
text, the tracer is assumed to be immobile from the outset, Ds = 0, and appendix B verifies
that the limit Ds → 0 can be taken after the formal manipulations. Summation and indices are
from now on always understood to run from 1 to N , i.e., to exclude the index s = N + 1 for
the tracer. To simplify the presentation, we also introduce the radii as and a of the tracer and
the bath particles, respectively. It is however important to realize that we consider arbitrary
isotropic short-ranged particle interactions, where a and as may be effective state-dependent
sizes as e.g. in the case of soft repulsions of the form V p(r = |ri − r j |) ∝ r−12.

For the following, we introduce some further notational conventions. It is convenient to
work with the backward or adjoint Smoluchowski operator

� ≡ D0

∑
i

(∂ i + Fi) · ∂ i , (4)

which gives the time evolution of variables A({ri}) on the phase space: ∂t A = �A.
It also determines the time evolution of correlation (fluctuation) functions �AB(t) =
〈A∗ exp {�t}B〉/〈A∗B〉, which we normalize by their equal-time values calculated by canonical
averaging with the Gibbs–Boltzmann weight 〈· · ·〉 ∝ ∫ ∏N+1

i=1 dri · · · e−V . Note that here the
tracer–particle interactions enter in full non-linear detail, and that the equilibrium weight is a
stationary solution of equation (3).

The fluctuating microscopic bath particle density at position r is given by �(r) =∑
j δ(r − r j), with spatial Fourier transform, �q = ∑

j exp {iq · r j }, where the q = 0
contribution from the constant bulk density n will be neglected. The corresponding tracer
density fluctuation is given by �s

q = exp {iq · rs}. Temporal Fourier decomposition will
be denoted by Aω = ∫ ∞

−∞ dt eiωt A(t), while the Laplace transformation is used with the
convention A(ω) = ∫ ∞

0 dt eiωt A(t).

2.2. Generalized Onsager regression hypothesis

The connection between the statistical mechanics description on the Smoluchowski level and
the macroscopic hydrodynamic picture will be made by comparing the density fluctuations
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predicted from the two descriptions for the identical given boundary problem in a simple
geometry.

In order to use the familiar Smoluchowski operator of equation (3), we consider the
motion of particles around a spherical object, the tracer. Bath particle j experiences the short-
ranged force F s

j = −∂ j V s close to it. Moving the tracer, by an unspecified external means,
with velocity v(t) induces a particle flux at its surface, which in linear order in v equals
jbd(t) = nv(t) on the macroscopic level. Deviations of the coarse grained particle density
around the tracer n(r, t) from the bulk value n close to the tracer would enter in higher order
in v only. The disturbance on the microscopic level required to induce this applied particle
flux can thus be obtained from requiring the non-equilibrium average of the tracer velocity to
agree with the macroscopic value up to non-linear corrections:

〈∂trs〉(ne) = v(t) + O(v2). (5)

Adiabatically turning on the applied velocity in the infinite past eliminates initial value
contributions in the deviatoric density, δn(r, t) = n(r, t) − n, and allows us to use a Fourier
decomposition, v(t) = ∫

(dω/2π) e−iωtvω. Linear response theory then connects the density
deviation to the given disturbance via a (vector) susceptibility χ(r, t). It vanishes for t < 0
because of causality, and its spatial argument r is measured from the tracer sphere centre.
After Fourier transformation, both the macroscopic hydrodynamic result (cf appendix A) and
the microscopic result (cf sections 2.3 and 2.4) can be written as

δnq,ω = nvω · χq(ω) + O(v2
ω). (6)

Now, in the spirit of Onsager’s hypothesis we assume that the microscopic calculation of
equation (6) reduces to the macroscopic solution for smooth and slow fluctuations, i.e. in the
limit of small frequencies and wavevectors. Yet, in order to derive hydrodynamic boundary
conditions, the coarse graining must be taken with respect to the bath particle size a only, while
the tracer size is required to satisfy as 
 a. Thus we keep as fixed so that the macroscopic
diffusion equation description, while it applies for distances r 
 a only, nevertheless includes
both the far field (r 
 as) and near field (r � as). The latter case is equivalent to considering
the density profile δn(z, t) at a distance z close to a planar wall obtained formally when taking
as → ∞. Although this limit does not provide a faithful representation of a macroscopic
boundary as an assembly of atoms, it has the virtue of being the conceptually simplest
realization of a hydrodynamic boundary problem.

Two aspects of the approach described are worth mentioning: first, while equations (5),
(6) are linear in the applied boundary flux, the particle–wall (tracer) interactions are included
exactly. Thus on a local length scale the unperturbed equilibrium density variations arise,
which differs somewhat from the approach to shear flow past a surface in [7]. Second, as
discussed e.g. by Kadanoff and Martin for the initial value problem [3], a general perturbation
to the fluid induces fluctuations in the non-conserved variables, which have to die out before the
hydrodynamic description applies. For the present boundary perturbation the same reasoning
applies, and thus the hydrodynamic description only holds for large distances, while locally
deviations from the hydrodynamic solution need to appear; for rarefied gases these Knudsen-
layer effects are familiar [5]. In the present many-body linear response calculation the technical
difficulty is connected to coarse graining across the equivalent layer, which has a width
connected to the particle size a.

2.3. Linear response calculation

In order to proceed, the perturbation to the Smoluchowski operator � needs to be found which
gives the required velocity of the tracer in equation (5). Without hydrodynamic interactions,
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the perturbation equivalent to a constant solvent velocity, which is felt solely by the tracer, is
by inspection

	� = v(t) · ∂s . (7)

A standard linear response calculation using its adjoint 	�† = −v(t) · ∂s , which acts on the
probability density in equation (3) [9], gives the resulting deviation in an arbitrary variable A:

〈δA(t)〉(ne) ≡ 〈A(t)〉(ne) − 〈A(t)〉 = −
∫ t

−∞
dτ v(τ ) · 〈Fse�(t−τ) A〉 + O(v2). (8)

Thus, equation (5) becomes

〈∂trs〉(ne) = 〈(� + 	�)rs〉(ne) = 〈v(t) · ∂srs〉 + O(Ds/D0, v
2). (9)

See appendix B, for a more careful discussion for finite tracer diffusivities Ds > 0. As
required, the perturbation equation (7) gives the average velocity of the tracer, which enters
the macroscopic boundary condition equation (2).

The linear response formula can also be applied to the microscopic density field �(r′)
at a (vector) distance r from the tracer centre: r′ = rs + r. Its unperturbed equilibrium
value is proportional to the familiar tracer–particle pair correlation function [1]: gs(r) =
(1/n)

∑
i 〈δ[r − (ri − rs)]〉, which gives the probability of finding bath particles at a distance

r from the centre of the tracer. The linear deviation in the density around the tracer induced
by the perturbation, equation (7), follows immediately from equation (8), and by comparison
with equation (6), the required linear response susceptibility is found:

χq(ω) = − 1

n

〈
Fs

−1

� + iω
�s∗

q �q

〉
, or χ(r, t) = − 1

n
〈Fse�t�(r + rs)〉θ(t), (10)

where the step function θ(t) expresses causality.

2.4. Timescale separation

The exact linear response susceptibility varies on short microscopic scales of time and length
but also on long ones, which are amenable to a hydrodynamic description. The Zwanzig–Mori
projection operator formalism enables one to disentangle these contributions by splitting the
resolvent into fast and slow subspaces [1]. The resolvent R(ω) = −1

�+iω arises in the Laplace
transform of a general correlation function, �AB (ω) = 〈A∗ R(ω)B〉/〈A∗ B〉, and contains
poles which shift to vanishing frequency for smooth fluctuations (q → 0). These so-called
hydrodynamic poles are connected with the exact conservation laws of the system, and the
Zwanzig–Mori formalism isolates them. In the present situation, where equation (3) holds,
there are only poles connected with particle number conservation: each particle, including
the tracer, is conserved, as is the total density, ∂t�q ∝ q for q → 0. While the more careful
calculation in appendix B takes into account the tracer, here we choose for the slow subspace
the one spanned by the total density only. That is, we use the projector P = �q〉(N Sq )−1〈�∗

q ,
which is normalized by the equilibrium Brownian particle structure factor Sq = 〈�∗

q�q〉/N [1].
The justification for this simplification is provided by the thermodynamic limit, in which only a
non-extensive number of particles actually interact with the tracer; see below and appendix B.

The exact identity obtained in the Zwanzig–Mori projection operator formalism [10] gives
for a general fluctuation function

〈A∗ R(ω)B〉 = 〈A∗ R′(ω)B〉 + 〈A∗(1 + R′(ω)�)P R(ω)P(1 + �R′(ω))B〉, (11)

where the reduced resolvent describes the fast dynamics decoupled from the slow fluctuations
of the conserved density:

R′(ω) = Q
−1

Q�Q + iω
Q with Q = 1 − P. (12)
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Thus, the coupling of the arbitrary variables A, B to the slow conserved density is found;
explicitly it is obtained when writing out P R(ω)P in equation (11), and the slow variable
couples in with static (i.e. 〈A∗�q〉) and frequency-dependent (i.e. 〈A∗ R′(ω)��q〉) overlaps.

In order to apply equation (11) to the correlation function in equation (10), the (expected)
problem arises that it is formed with variables that are not defined in a translationally invariant
manner. Translational symmetry is broken by the boundary (i.e. measuring distances from
the tracer). On the macroscopic level this could be handled by introducing the appropriate
eigenfunctions that satisfy the boundary conditions for the prescribed geometry. Yet, on
the microscopic level this would require determining the many-body eigenfunctions of the
Smoluchowski operator equation (4) for a given force field arising from V s . Within the
framework of fluctuating hydrodynamics, Wolynes achieved a related task in a scattering
formalism calculation for the flow of a Newtonian fluid past a wall [6]. His calculation
focused on the non-linear coupling of the hydrodynamic modes and thus could circumvent
the study of the local variables close to the boundary. Consequently, he did not determine the
boundary position microscopically and instead introduced a short-distance cut-off (in his case
irrelevant). Because we aim for an exact determination of the boundary condition, we chose the
plane-wave decomposition of the density fluctuations which enables one to use equation (11),
and apply it to the resolvent in a shifted coordinate system

Rq(t) = �s
q R(t)�s∗

q = R(t)(1 + O(Ds/D0)). (13)

It agrees with the original resolvent only if thermal tracer fluctuations are neglected
(cf appendix B). In this limit, the Fourier-transformed susceptibility becomes

−nχq(ω) = 〈F s∗
q R(ω)�q〉 = 〈F s∗

q [1 + R′(ω)�]�q〉�q(ω), (14)

where we have introduced the tagged force density fluctuation F s
q = Fs�

s
q and the (normalized)

density correlator �q(ω) = 〈�∗
q R(ω)�q〉/(N Sq ). Application of equation (11) to the latter

gives the familiar expression

�q(ω) =
[
−iω − 〈�∗

q��q〉
N Sq

+
〈�∗

q�R′(ω)��q〉
N Sq

]−1

→
[
−iω + q2 D0

S0

]−1

. (15)

The second expression in equation (15) is taken in the hydrodynamic limit of small frequencies
and wavevectors, where it gives the (transformed) fundamental solution of the diffusion
equation (1). This leads to the known microscopic definition of the gradient diffusion
coefficient, D = D0/S0. Here, S0 is a normalized compressibility. The result for D may be
called of Green–Kubo type because its apparent static nature originates in an instantaneously
decaying associated current.

The frequency-independent (or instantaneous) overlap in equation (14) can be expressed in
terms of the Fourier transform of the non-trivial part, hs(r) = gs(r)− 1, of the tracer–particle
pair correlation function introduced above, 〈F s∗

q �q〉 = iqnhs
q , but little further simplification

is possible in the retarded second term. Upon introducing the total force density fluctuation
Fq = ∑

j F j eiq·r j , Q��q = iQ
∑

j q · Fq, and the final (still exact) result for χ becomes (for
t > 0)

χq(t) = −iqhs
q�q(t) − i

D0

n

∫ t

0
dτ 〈F s∗

q R′(t − τ )q · Fq〉�q(τ ). (16)

It is written as function of time to clearly present the instantaneous (first term) and retarded
coupling of the density fluctuations to the susceptibility. Because of Newton’s third law, the
potential force Fs felt by the tracer can be re-expressed as the negative of the total force exerted
by the tracer on all particles; Fs = −∂s V s = ∑

i ∂ i V s ≡ −F0. For the same reason it is equal
but opposite to the integrated total force: Fs = F s

q=0 = −Fq=0 = ∑
i ∂i V = −F0.
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A noteworthy aspect of the (straightforward) calculation in this section concerns the
thermodynamic limit which is required in order for the bulk quantities obtained to take their
standard values for an unbounded system. For example, the tracer bath particle interactions
enter the expression for Sq (and consequently for D) via the equilibrium distribution function.
Nevertheless, in the thermodynamic limit this correction vanishes because the assumed short-
ranged interaction of the bath particles with the tracer decays beyond the distance of a few a,
and the bulk of the particles is not affected.

3. Coarse graining and discussion

The exact correlation function,equation (16),describes the response of the system to an injected
boundary flux of particles on all length scales. In order to derive the hydrodynamic boundary
condition, coarse graining is required as discussed in section 2.2. Appendix A collects the
results from the macroscopic approach in order to compare them with the small-wavevector
and small-frequency limits of the microscopic susceptibility.

3.1. Instantaneous response

In order to familiarize oneself with equation (16), it is useful to consider a rapid velocity pulse
on the tracer at time t0, v(t) = V δ(t − t0), and to concentrate on the instantaneous response
of the density:

δn(r, t = t0) = nV · χ(r, t = 0) = nV · ∇hs(r).

This arises from the first term in equation (16), which simplifies because of �q(t = 0) = 1,
and is determined by the equilibrium density profile of bath particles around the tracer. The
inserted flux, nV , is packed close to the boundary according to the equilibrium fluid structure
hs of the bath particles. The (Ursell) function hs varies between the universal limits, hs = −1
for short distances where the hard-core volumes of the particles are excluded by the tracer, and
hs = 0 far away from the tracer. In between, it shows layering over a distance of the order of
a few a.

In the hydrodynamic limit, which corresponds to as 
 a here, the present work provides
the connection of the position of the boundary to the molecular interaction potential V s . At
a radial distance σ from the tracer centre, hs varies rapidly [1] and in the limit a → 0, with
fixed as and r , may loosely be taken as a step function, hs(r) = −θ(σ − r). The macroscopic
sphere asymptotically becomes impenetrable for the bath particles irrespective of the exact
interaction potential. The latter however determines the exact boundary position σ , and its
definition becomes

hs
q → −2πσ 3 f (qσ) + O(σ 2) for as 
 a and qa � 1, (17)

where f (x) = (sin x − x cos x)/x3. Whenever equation (17) does not hold, possibly for long-
ranged forces or wetting situations, we expect equation (2) to be violated. Such situations are
excluded in the following. A finite (positive or negative) surface excess density enters in the
corrections of order σ 2. In the following sections we show that exactly the same structure also
appears in the retarded contributions to equation (16), and that the boundary position σ is thus
a static equilibrium concept (see however [7] for Newtonian fluid flow).

In the limit of as 
 a, the rapid variation of hs can be used to define a one-dimensional
cut through the density profile, which in the limit as → ∞ (and consequently σ → ∞) would
correspond to the situation at a wall [1]. With the wall at x = σ , and its normal vector pointing
along x̂, the wall profile hsW as a function of r̄ = r − σ x̂, x̄ = r̄ · x̂ follows

hs(r) → hsW (x̄) + O(r̄/σ) for σ → ∞. (18)
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It obeys hsW (x̄ → −∞) → −1 and hsW (x̄ → ∞) → 0, with rapid variations on a length
scale of order a around x̄ ≈ 0. Its one-dimensional Fourier transform is given by

hsW
qx

=
∫ ∞

−∞
dx̄ eiqx x̄hsW (x̄) = Hqx

−iqx
= 1

−iqx
+ H′(1 + O(qx a)), (19)

where the constant H′ is the surface density excess divided by n and is of order a itself. By
shifting the origin to x̄ = 0 (x = σ ), we eliminated (for simplicity) a phase factor eiqx σ in hsW

qx
,

which would prove convenient when keeping track of the wall position.

3.2. Near-field solution

Generically, boundary conditions are formulated when considering the motion in a half-space
bounded by a planar surface (wall). Analogously to the situation discussed above for the
instantaneous response, this can be realized in equation (16) by taking the limit as → ∞
and calculating χ(r = σ x̂ + r̄, t) = χW (x̄, t)x̂ + O(r̄/σ) to non-vanishing order. The result
χW (x̄, t) describes the motion close to an infinite plane wall or, in general, the near-field
solution for non-planar solid surfaces. Only its small-wavevector limit is required in the
following, and this simplifies because the force exerted on the diffusing particles by the wall
(for as → ∞) is perpendicular to it:

χW
qx

(ω) ∼
[

1 + iqx
D0

n
〈x̂ · F0 R(ω)x̂ · F0〉

]
�qx (ω). (20)

Here we have used that for vanishing wavevector the reduced resolvent in the relaxation kernel
again agrees with the full dynamics [1]. The retardation kernel in equation (20) therefore has
the familiar Green–Kubo form. If it could be replaced by a constant rate for small frequency,
〈x̂ · F0 R(ω → 0)x̂ · F0〉 → �, then for consistency the square bracket would become
[· · ·] → 1 + O(q). Fortunately, in an exact calculation for vanishing concentration of hard
Brownian spheres, n → 0, Dieterich and Peschel have shown that [11]

i
D0

n
〈x̂ · F0 R(ω)x̂ · F0〉 =

√−iD0

ω
(1 + O(na3)). (21)

In this limit D = D0, and the result of equations (6), (15), (20) agrees with the solution of the
hydrodynamic equations (1), (2), in the geometry considered; see equation (A.3). This proves
the boundary condition equation (2) in the dilute limit of hard spheres [12].

For the general situation of interacting Brownian particles at finite concentrations, no exact
calculations of the relaxation kernel in equation (20) are known. We proceed by performing
a mode coupling approximation [8, 13, 14], where the starting point is the more general
expression of equation (16) as it captures near- and far-field terms. The conserved density
fields are the slow variables and in the lowest pair-fluctuation approximation the overlap of the
fluctuating forces with �k�

s
k′ needs to be considered4. In the small-wavevector limit of interest,

the memory function becomes identical to the well studied tracer force autocorrelation kernel,
and its mode coupling result can be taken from the literature [14]:

D0

n
〈F0 R′(t)q · F0〉 ≈ D0q · lim

q→0

∫
d3k

(2π)3
(kk)

hs
khs

q−k

Sk
�k(t), (22)

where the tracer density fluctuation function does not appear explicitly (it equals 1 because
Ds = 0).

4 It can be expected that this approximation will not give numerically exact hydrodynamic results [15], but Schofield
and Oppenheim [16] have argued that this problem can be overcome by systematically taking the overlap with higher-
order density products into account.
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The mode coupling approximation of the relaxation kernel can be applied to the wall
or near-field problem upon the realization that the forces arise from density fluctuations
whose probability depends on the wall distance according to hsW (x̄) and is independent of
the parallel coordinates, ȳ and z̄. For the relevant wavevector region5, the hs

k in equation (22)
thus corresponds to

hs
q ≈ hsW

q = (2π)2δ‖(q)
Hs

qx

−iqx
, (23)

where δ‖(q) restricts the parallel wavevector to vanishing, qy = qz = 0, and the wall profile
function Hs defined in equation (19) enters. We find the approximation

D0

n
〈x̂ · F0 R(ω)x̂ · F0〉 ≈ (2π)2δ‖(q)

∫ ∞

−∞
dkx

2π

|Hs
kx

|2 D0

Skx

�kx (ω), (24)

where in the integrand ky = kz = 0. Importantly, in the hydrodynamic limit ω → 0, the
integral converges for such small kx � 1/a that the structure functions can be replaced by
their homogeneous zero-wavevector limits, Hs

kx
→ 1 and Skx → S0. The latter is the bulk

compressibility required to turn the single-particle D0 into the gradient diffusion constant D. It
is thus interesting that the exact one-dimensional result of equation (21) in the dilute limit only
applies to the present case because the (isolated) particles experience no interactions and thus
D = D0 in equation (21). Because the integration in equation (24) is dominated by k � a,
the density correlator can be replaced by its universal hydrodynamic limit from equation (15).

Collecting all terms together and performing the integrations gives the mode coupling
approximation

χq(ω) ≈ x̂(2π)2δ‖(q)

{
1 +

√
−iDq2

x

ω

[
1

2
+ · · ·

]}
1

Dq2
x − iω

, (25)

where the term 1
2 in the square bracket arises from the pair density projections considered and

· · · indicates higher-order density projections which should be taken into account following
an expansion procedure developed by Schofield and Oppenheim [16]. Assuming the series of
density projections in the square bracket in equation (25) to sum to one, the comparison with
equation (A.3) proves the correctness of the boundary condition equation (2), now at finite
concentrations.

3.3. Far-field solution

While the verification of the boundary condition equation (2) is achieved by the calculation
of the near field, it is instructive to also consider the density fluctuations very far away from
the spherical boundary. In this limit, both particle sizes a and as are small compared to the
wavelength, and the susceptibility in equation (16) simplifies to

χq(t) ∼ −iqα�q (t) with α = hs
0 − D0

3n

∫ ∞

0
dt 〈F0(t) · F0〉, (26)

for qas � 1; where the density correlator takes its hydrodynamic form, �q(t) = exp (−q2 Dt)
from equation (15). The density profile around a moving tracer rearranges by particle diffusion
and thus requires more and more time as the distances involved become larger. In the steady
case, ω = 0, a power law density profile develops:

δnω=0(r) ∼ − αn

4π D

vω=0 · r̂

r2
, (27)

5 First, equation (22) is transformed to r-space and then hs(r) is analysed according to equation (18). The procedure
is checked a posteriori from the convergence of the integral.
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as follows from equations (6), (15), (26) and transformation to r-space. It is of similar nature
to the Oseen velocity profile around a colloidal particle in a Newtonian solvent [4], as such
long-ranged patterns generally arise in hydrodynamic steady states [17]. In the Brownian
particle context, it is well known from calculations in the dilute limit, n → 0 [9, 18, 19], and
the amplitude factor α extends those calculations to finite densities.

Interestingly, the expression for α in equation (26) holds for arbitrary size ratios as/a, even
beyond the macroscopic hydrodynamic limit, which is obtained for as 
 a. For dilute hard
spheres, the known result α(n → 0, as = a) = −2πσ 3 (whereσ = as +a = 2a) [9, 18] agrees
with the expectation from the macroscopic calculation, equation (A.2). For finite densities the
mode coupling approximation equation (22) can be used:

α ≈ hs
0 − lim

ω→0
D0

∫ ∞

0

dk

6π2

(k2hs
k)

2

Sk
�k(ω). (28)

In the limit of a macroscopic tracer, which becomes impenetrable to the Brownian particles
with the result that hs(r) approaches a step function as argued in equation (17), the integration
in equation (28) already converges for ka � 1. The density correlator is then given by the
hydrodynamic limit and the structure factor equals the compressibility, Sk = S0, so

α ≈ −2πσ 3{ 2
3 + [ 2

9 + · · ·]}. (29)

The leading contribution 2/3 arises from the static term, while we may again expect [16] the
Green–Kubo expression to sum to the missing 1/3 if, extending our pair-density factorization,
higher order density fluctuations are included.

4. Application to the diffusive long-time tail

An immediate consequence of the long-ranged structure built by particle diffusion around a
macroscopic tracer are slow time-dependent fluctuations in the force that the tracer feels. An
interesting aspect of these so-called long-time tails is that hydrodynamic calculations provide
insights into them [4, 20], even in the presence of boundaries [21]. As an application of the
above discussion of boundary conditions for the diffusion equation, we study the long-time
tail in the force autocorrelation function of a tracer diffusing among Brownian particles. This
extends the knowledge available at infinite dilution [9, 18, 19].

As a first step, the constitutive equation connecting the force a particle feels to the
fluctuations of the conserved variable, the bath density, is required. It follows from the
Zwanzig–Mori decomposition as [10]

〈δF s∗
q (ω)〉 = 〈δ�∗

q(ω)〉
N Sq

(〈F s∗
q �q〉 + 〈F s∗

q R′(ω)��q〉) → iq
α

S0
〈δ�∗

q(ω)〉, (30)

where the limit in the second part holds for q → 0 and ω → 0, and the coefficient α was
defined in equation (26). Therefore, in the hydrodynamic limit, if a density gradient exists, it
causes the force field

〈δFs(r, ω)〉 = α

S0
∇〈δ�(r, ω)〉. (31)

A sphere among the Brownian particles experiences this force density, and if it moves
with velocity v, the density fluctuations in its vicinity are described by equations (6), (16).
Following the macroscopic approach to long-time tails, and inserting these expressions (with
the obvious definition of the matrix field α(r, ω)) into equation (31) gives the force field
around the sphere. The sphere feels the interactions on its surface and thus the total force on
it is obtained by averaging over the surface:

Fs,ω = nα

S0
vω

∫
d2 fr

4π
(v̂ω · ∇r )

∫
d3s v̂ω · α(s, ω) · ∇r�(r − s, ω)

∣∣∣∣
r=σ

, (32)
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where �(r, ω) = 1
4π Dr e−κr with κ2 = −iω/D following from equation (15). In general

this result cannot be simplified and e.g. the ω = 0 value, which would be connected to
the tracer diffusion coefficient, cannot be found from our hydrodynamic consideration alone.
Linear response theory enables one to identify the tracer force autocorrelation function from
equation (32): Fs,ω = −(1/3)〈Fs(ω) · Fs〉vω. In the dilute limit, it shows a small-frequency
anomaly of order κ3 and, expecting this result at finite densities also, we expand the fundamental
solution � of the diffusion equation up to this order. Abbreviating the uninteresting terms this
leads to

〈Fs(ω) · Fs〉 = c + c′iω +
nα2

4π DS0σ 3

[−iωσ 2

D

]3/2

+ O(ω2). (33)

Importantly, the linear term in κ vanishes (it would indicate 〈Fs(t → ∞) · Fs〉 ∝ t−3/2),
and the leading ω3/2-anomaly corresponds to the final power law decay 〈 �Fs(t → ∞) · �Fs〉 ∼
(3πnα2/16S0)(tπ D)−5/2. As was expected from the spatial long-ranged pattern around the
tracer, there exists a temporal long-time tail whose amplitude is closely connected to the
latter. Interestingly, standard mode coupling theory gives different results [8, 13, 14, 23]
and requires additional considerations [22]. Our result implies that a frequency-dependent
vertex coupling density modes would be required in order to obtain equation (33), which
agrees with the known low-density results [18, 19] upon accounting for the tracer diffusion
by the replacement D → D0 + Ds and the identification σ = a + as . The tracer mean
squared displacement is connected to the force correlation function via the equation of motion,
∂2

t 〈	r2(t)〉 = −2D2
s 〈Fs(t) · Fs〉, and exhibits a power law approach ∝−α2t−1/2 to the long-

time diffusion.

5. Conclusions and outlook

We have presented the first statistical mechanics derivation of a hydrodynamic boundary
condition for the diffusion equation, including the definition of the macroscopic boundary
position from molecular parameters. This has proven surprisingly difficult, because a non-
analytic (non-Markovian) structure in the resulting relaxation kernel needed to be identified.
Quoting exact low-density results and performing a mode coupling approximation, this
structure could be established. The 1/

√
ω anomaly of diffusion close to a wall is connected to

the penetration length
√

D/ω which arises generically in these situations [4]. Thus, we believe
the appearance of non-Markovian relaxation kernels is inherent to the statistical mechanics
derivation of boundary conditions. Gratifyingly, within the mode coupling approximation it
arises from a non-linear coupling of the hydrodynamicmodes themselves, and thus, as required
for a macroscopic hydrodynamic concept, does not depend on molecular details.

As an application of the boundary condition derived, we calculated the long-range density
pattern around, the resulting force on, and the mean squared displacement of a tracer sphere
moving among the bath particles. Extending results for dilute systems, a generic power law
approach (long-time tail) to the ultimate diffusion was found in the motion of the tracer, whose
amplitude (∝α2) we determined for arbitrary tracer size. Interestingly, α may vanish for special
interaction parameters, in which case the tracer might be called ‘invisible’.

Clearly our calculation only presents a first step to determining boundary conditions for
hydrodynamic equations. Thus when considering dispersed particles, their hydrodynamic
interactions mediated via the solvent should be included. As these are long ranged, interesting
effects may appear. Also the description of the surface should be improved by going beyond the
single-tracer calculation. Structured or rough surfaces could be modelled,as well as fluctuating
ones, in order to address the dynamics close to e.g. membranes. As the Smoluchowski equation
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is the basis for the dynamics of polymers and general macromolecules, the diffusion of complex
molecules close to surfaces also could be analysed following the approach presented. We hope
to address some of these points in the future.
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Appendix A. Solution of the diffusion equation around a sphere

For convenience of comparison with the results obtained in the main text, this abstract
summarizes some hydrodynamic expressions. To linear order in the perturbing tracer velocity
v, it is straightforward to solve the macroscopic equations (1), (2) around a sphere with radius
σ that oscillates with velocity amplitude vω. With κ2 = −iω/D the square of the inverse skin
depth, one obtains

nω(r) = vω · r̂
nσ 3/D

2 + 2κσ + (κσ )2

1 + κr

r2
e−κ(r−σ ). (A.1)

This simplifies to the far-field expression

nω(r) ∼ vω · r̂
nσ 3

2D

1 + κr

r2
e−κr , nq,ω ∼ vω · q

2π inσ 3

Dq2 − iω
, (A.2)

for a small sphere, σ → 0. Close to the sphere, it takes the near-field expression form

nω(x) ∼ n

D
vx

ω

e−κ x̄

κ
, nqx ,ω ∼ nvx

ω

1 +
√−iDq2

x /ω

Dq2
x − iω

, (A.3)

because the sphere degenerates to a plane upon taking the limit σ → ∞; here x̄ gives the
distance (r = σ x̂ + r̄) and the Fourier transformation in equation (A.3) is one dimensional.

Appendix B. Mobile tracer calculation

To simplify the presentation in the main text and to make direct contact with the hydrodynamic
calculation, we have worked with a non-fluctuating, macroscopic tracer throughout. This
appendix extends the calculations of the main text to a finite tracer mobility Ds , and checks
that they are indeed recovered by taking the limit Ds → 0.

Concerning the tracer velocity in equation (9); with (7), (8), and working in the linear
response approximation, it becomes

〈∂trs〉(ne) = 〈v〉 + 〈DsFs〉(ne) = v − Ds

∫ t

−∞
dτ v(τ ) · 〈Fse�(t−τ)Fs〉. (B.1)

The deviation from the hydrodynamic velocity v is explicitly of the order Ds and thus vanishes
as required for Ds = 0.

At finite Ds , the resolvents Rq and R in section 2.3 differ. Further, the tagged particle
density now being a dynamic fluctuating variable, it has to be considered as a separate slow
mode in the projection in equations (11), (12):

P = �s
q〉〈�s∗

q + �q〉 1

N Sq

〈�∗
q − �s

q〉
ncs

q

N
〈�∗

q − �q〉
ncs

q

N
〈�s∗

q . (B.2)
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Here, cs
q = hs

q/Sq is the (tagged) direct correlation function. It is straightforward to check that
P P = P , P�q〉 = �q〉, and P�s

q〉 = �s
q〉 up to corrections that are smaller by (nhs

q)
2/(N Sq)

relative to the leading order. The susceptibility of equation (14) is rewritten as

nχq(ω) = −[〈F s∗
q �q〉 − 〈F s∗

q R′
q�q�q〉]〈�∗

q Rq�q〉/(N Sq). (B.3)

Hence, exactly the same decomposition of the susceptibility into an instant and a retarded
contribution has been achieved as in equation (14) of the main text because of the negligible
feedback of the tracer onto the bulk [16]. To make contact with the expressions in the main
text, a factorization approximation is required because of the tracer motion:

〈�∗
q Rq�q〉 = 〈�∗

q�
s
q R�s∗

q �q〉 ≈ N Sq�q(ω)�s
q(ω), (B.4)

where �s
q(ω) ≡ 〈�s∗

q R(ω)�s
q〉. The memory function 〈F s∗

q R′
q�q�q〉 also acquires a

contribution from the tracer diffusion. To the relevant lowest order in q it becomes

iD0〈F s∗
q R′

qq · Fq〉 − iDs〈F s∗
q R′

qq · Fs�q〉. (B.5)

The limit Ds → 0 recovers the results in the main text, where Ds = 0 from the outset.
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